
Stephen Checkoway

Programming Abstractions
Lecture 24: MiniScheme F

Announcement

Homework 7 is now up on the website

‣ Use the same groups as before (this time, they should be created already)

‣ It's due on Dec. 17

Exam 2 is next week

‣ Monday, Dec. 13: Exam 2 review; come prepared with questions!

‣ Wednesday, Dec. 15: Exam 2, take home exam

Office hours

‣ Tomorrow at 13:30–14:30

Review: How do we parse an application like (+ 2 3)?

A. (app-exp + 2 3)

B. (app-exp + (2 3))

C. (app-exp (var-exp '+) (lit-exp 2) (lit-exp 3))

D. (app-exp (var-exp '+) (list (lit-exp 2) (lit-exp 3)))

E. None of the above

3

At a higher-level of detail

Applications are parsed into two parts

‣ The expression for the procedure part

‣ The list of parsed arguments

Evaluating an app-exp

Evaluating an app-exp

How do we evaluate the app-exp we get from 

(app-exp parsed-proc list-of-parsed-args)?

Evaluating an app-exp

How do we evaluate the app-exp we get from 

(app-exp parsed-proc list-of-parsed-args)?

In steps

‣ We evaluate the parsed-proc and the list-of-parsed-args in the
current environment

‣ Then we call apply-proc with the evaluated procedure and list of arguments

MiniScheme F: Lambdas

EXP → number	 	 	 	 parse into lit-exp  
 | symbol	 	 	 	 parse into var-exp  
 | (if EXP EXP EXP) 	 	 parse into ite-exp  
 | (let (LET-BINDINGS) EXP)	 parse into let-exp  
 | (lambda (PARAMS) EXP)	 parse into lambda-exp  

 | (EXP EXP*) parse into app-exp  
LET-BINDINGS → LET-BINDING*  
LET-BINDING → [symbol EXP]* 
PARAMS → symbol*

Implementing lambdas
Parsing

Parse a lambda expression such as (lambda (x y z) body) into a new
lambda-exp structure

This needs

‣ The parameter list, e.g., '(x y z)

‣ the parsed body

Note that the parameter list is not parsed, it's just a list of symbols

Implementing lambdas
Evaluating

What should a lambda-exp evaluate to?

In other words, what is the result of evaluating something like 
 (lambda (x) (+ x y))?

Closures!

We need a closure data type

‣ (closure params body env)

‣ (closure? obj)

‣ (closure-params c)

‣ (closure-body c)

‣ (closure-env c)

The params and the body come directly from the lambda-exp

The env is the current environment argument to eval-exp

Where should the new closure data type be defined? Why?

A. parse.rkt

B. interp.rkt

C. closure.rkt

D. minischeme.rkt

10

To recapitulate

To parse a lambda

‣ Make a new lambda-exp object to hold parameters and body

To evaluate a lambda

‣ Make a new closure object to hold the parameters, body, and environment

Nothing new is needed for parsing calls to lambda expressions; why?

(let ([f (lambda (x) (+ x y))])  
 (f (- a b)))

Evaluating calls to closures

Recall: All applications are evaluated by calling apply-proc with the evaluated
procedure and the list of evaluated arguments

Here's what our apply-proc looks like after homework 6

(define (apply-proc proc args)

 (cond [(prim-proc? proc)

 (apply-primitive-op (prim-proc-op proc) args)]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

Evaluating calls to closures

We need to add some code before the else

(define (apply-proc proc args)

 (cond [(prim-proc? proc)

 (apply-primitive-op (prim-proc-op proc) args)]

 [(closure? proc) …]

 [else (error 'apply-proc "bad procedure: ~s" proc)]))

How do we evaluate the closure?

How do we evaluate the closure?

At a high level (don't think about MiniScheme here), given a closure and some
arguments, how do we evaluate calling the closure?

How do we evaluate the closure?

At a high level (don't think about MiniScheme here), given a closure and some
arguments, how do we evaluate calling the closure?

Steps

‣ Extend the closure's environment with bindings from the closure's parameters
to argument values

‣ Evaluate the body of the closure in this extended environment

How do we evaluate the closure?

At a high level (don't think about MiniScheme here), given a closure and some
arguments, how do we evaluate calling the closure?

Steps

‣ Extend the closure's environment with bindings from the closure's parameters
to argument values

‣ Evaluate the body of the closure in this extended environment

If you find yourself wanting to pass the environment from eval-exp to

apply-proc, there is something wrong; you don't need to do that

Example: ((lambda (x y) (+ x y)) 3 5)
Parsing

Parse into an (app-exp proc args)

(app-exp (lambda-exp '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x)  
 (var-exp 'y))))  
 (list (lit-exp 3)  
 (lit-exp 5)))

Example: ((lambda (x y) (+ x y)) 3 5)
Evaluating

(app-exp (lambda-exp '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x)  
 (var-exp 'y))))  
 (list (lit-exp 3) (lit-exp 5)))

This is evaluated by calling apply-proc with the evaluated procedure and evaluated
arguments

The procedure evaluates to  
(closure '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x) (var-exp 'y)))  
 e)  
The arguments evaluate to '(3 5)

Example: ((lambda (x y) (+ x y)) 3 5)
Evaluating

apply-proc will evaluate the closure 
(closure '(x y)  
 (app-exp (var-exp '+)  
 (list (var-exp 'x) (var-exp 'y)))  
 e)  

by calling eval-exp on the body in the environment e[x ! 3, y ! 5]

Since the body is an app-exp, it'll evaluate (var-exp '+) to get  
(prim-proc '+) and the arguments to get '(3 5)

Example 2
Parsing

Example 2
Parsing

What is the result of parsing this?  
(let ([f (lambda (x) (* 2 x))])  
 (f 6))

Example 2
Parsing

What is the result of parsing this?  
(let ([f (lambda (x) (* 2 x))])  
 (f 6))

(let-exp '(f)  
 (list (lambda-exp  
 '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x)))))  
 (app-exp (var-exp 'f)  
 (list (lit-exp 6))))

Example 2
Evaluating

(let-exp '(f)  
 (list (lambda-exp  
 '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x)))))  
 (app-exp (var-exp 'f)  
 (list (lit-exp 6))))

Evaluate the let-exp by extending the current environment e with f bound to the
closure we get by evaluating the lambda-exp in environment e: 
(closure '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x)))  
 e)

Example 2
Evaluating

With f bound to  
(closure '(x)  
 (app-exp (var-exp '*)  
 (list (lit-exp 2) (var-exp 'x))) 
 e)  
we next evaluate the body of the let  
(app-exp (var-exp 'f) (list (lit-exp 6)))

This will evaluate (var-exp 'f), getting the closure above and evaluate the

arguments getting '(6)

apply-proc will call eval-exp on the body of the closure and the extended

environment e[x ! 6]

